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bstract

In this work, pH control of CaCO3–sulfuric acid neutralization process was realized in a stirred continuous reactor under optimum operating
onditions in which the solubility of CaCO3 was maximum. The pH of the solution was controlled by using linear and nonlinear dynamic matrix
ontrol algorithm with an on-line computer control system in the reactor. A step response model was used for the dynamic matrix control. For this
urpose a unit step effect was given to the manipulated variable and the changes in the pH value were obtained on-line. In the nonlinear dynamic
atrix control NARMAX model was developed as an addition to the above model. When the system was in open loop, random loads were given
o the manipulated variable and input and output values were obtained on-line. Using these values, NARMAX model parameters were obtained
ith nonlinear regression. Developed DMC and NLDMC algorithms were applied to the neutralization process and the success of the algorithms
as tested according to ISE and IAE values.
2007 Elsevier B.V. All rights reserved.
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. Introduction

SO2 combines with water vapor in the air and then this gas
orms droplets of sulfuric acid, which fall to the ground as acid
ain, causing harm to everything living and nonliving. Over 200
rocesses have been reported in literature for the removal of SO2
rom flue gases and among these processes about 20 of them
ave been used in power plants and in other industries. These
rocesses can generally be classified as wet and dry processes. In
he wet limestone flue gas desulphurization process, powdered
imestone dissolves and neutralizes acidity produced by SO2
bsorption in the liquid phase. It is well known that the soluble
alts have an effect on the dissolution rate of the limestone used
s the absorbent. Many studies have been carried out on the
eactions of calcium carbonate with acidic solutions [1].

There is a considerable attention of pH control in recent liter-
ture. Because pH process has a simple model, these processes

re ideal for clarifying new methods concerned with nonlin-
ar control and simple and low-priced experimental equipments
an be used in order to conduct reliable experiments. One of
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ion process

he reasons for the popularity of pH control in literature is the
act that pH control problems have not been solved yet. pH
ontrol is very important in chemical industries, wastewater
reatment, polymerization reactions, fatty acid production, bio-
hemical processes and SO2 removing processes. However, in
ighly nonlinear pH neutralization process, a change in the feed
omposition or in ion concentration causes a high sensitivity
n pH. These attitudes have caused problems in traditional PID
ontrollers. A lot of researchers work on modeling and control-
ing pH processes [1]. But nonlinear control requires numerical
nalyses and much more experimental research, therefore it is
imited. Dynamic matrix control has been proposed by Cutler
2] and it has many applications in industry. Effective linear con-
rol strategies in nonlinear systems are realized only if a design
arameter (control parameters, sampling time, tuning parame-
ers, etc.) is adjusted well because its original model is linear.
here are a lot of studies on extended DMC control algorithm.
MC is extended to handle different operation regions and input
isturbances [3]. A multiple model framework of step response
odels is utilized. Nonlinear model based control of the free rad-
cal solution polymerization of styrene in a jacketed batch reactor
ere applied and its performance was examined to achieve the

equired monomer conversion and molecular weight [4]. Zhao et
l. [5] developed application software using a method of nonlin-
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Nomenclature

ai step response coefficient
A dynamic matrix composed of the step response

coefficient
bi model coefficients
d disturbance effect
D particle size
F Fisher’s F value
I number of the coefficients in the regression equa-

tion
IAE integral of absolute error
ISE integral of square error
k number of sampling time
M move horizon
N number of experimentation
NT the number of step response coefficient needed to

sufficiently describe the process dynamics
P length of the prediction horizon
r(t) set point
S/L solid/liquid ratio
Sbi standard error of the coefficient
S2

e error mean square
S2

r residual mean square
T temperature (◦C)
u input
�u(k) the change in the input
Ui real value of the parameters
Uiav average values of the parameters
�Ui incremental value of the parameters
Xi independent variables matrix
X1 coded value of the pH
X2 coded value of the T
X3 coded value of the S/L
X4 coded value of the D
y(t) output
ypast the effects of the known past inputs on the future

outputs
ysp set point
Y observation vector
Yi ith experimental value of the conversion
∧
Yi ith estimated value of the conversion
Ȳ0

i average value of the conversion

Greek letters
γ and λ time varying weights on the output error and on
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the input change, respectively

ar dynamic matrix control based on multiple operating models.
his software is applicable to a pH neutralization process and a
tyrene polymerization reactor.
Self-tuning PID control was applied to a jacketed batch reac-
or in which limestone slurry was titrated with sulfuric acid [1].
s a result of incomplete dissociation of limestone in water

nd the equilibrium reaction with sulfuric acid, the system

s
t
N
t
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ehaves like a buffer solution between pH 2 and pH 7. There-
ore, the process gain varies extremely over the range of pH
alue which is controlled. The dynamic behavior of the sys-
em was observed. The system was initially brought to optimal
teady-state condition, then solid CaCO3 with 250–375 mm par-
icle size and 3% S/L ratio was added to the system, and the time
ariation of pH was observed experimentally [1]. Self-tuning
ontrol action was employed because it was regarded as the best
ontrol action for this application. Second order auto regres-
ive moving average with external input (ARMAX) system
odel was utilized for control algorithm. For the model param-

ter estimation, pseudo random binary sequence (PRBS) was
iven to the open-loop system and input–output data were mea-
ured. Bierman algorithm was used to evaluate the parameters
f the ARMAX model. The STPID algorithm was implemented
xperimentally to control the pH of the continuous reactor and
ulfuric acid flow rate was chosen as the manipulated variable
1].

Model predictive control has received attention as an industri-
lly implemented advanced control method. This control method
s used in different industries like refinery and petrochemical
lant [6]. MPC method is very simple and the simplicity of this
ethod accounts for its popularity. MPC has almost become an

easy to use” engineering tool. The vast majority of MPC appli-
ations are based on a linear model. MPC can be described as an
pen loop optimal control technique where feedback is incorpo-
ated via the receding horizon formulation. Open loop control
trategy is calculated at every sampling time. The available data
s updated for the model identification at the next sampling time.
mong the popular applications of model predictive control are
MC, MAC, GMC and IMC [4,6–10]. The main differences
etween MPC methods lie in their models which define the pro-
ess. The linear and nonlinear MPC utilize linear and nonlinear
odels respectively [6]. The MPC considers a future control

orizon and constraints are directly included in the algorithm.
he basis of MPC system is to compose a mathematical model of

he process to be controlled. It is important to choose parameters
nd structure of the model. The DMC which is an MPC algo-
ithm is a computer control algorithm used to solve complex
ontrol problems by maintaining a prediction of the system’s
uture outputs based on the history and knowledge of the sys-
em’s dynamics. Most of the control techniques, which include
MC, are based on linear models, therefore they are not con-
enient to control nonlinear systems. Thus there are a lot of
tudies to extend the MPC techniques to the control of nonlinear
rocesses.

The aim of this work is to apply the system identification tech-
iques to limestone–sulfuric acid neutralization process under
ptimum conditions and control of pH with linear and nonlinear
ynamic matrix control. The contribution of the present work
s the application of this method to an experimental system.
he pH control of CaCO3–sulfuric acid neutralization pro-
ess under optimum operating conditions (pH, particle size and

olid/liquid rate) by DMC and NLDMC algorithms is inves-
igated. Polynomial type NARMAX model is determined for
LDMC algorithm with system identification methods. When

he system is in open loop, random load changes are given
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o the manipulated variable and input and output values are
btained on-line. Using these values, NARMAX model param-
ters are obtained with nonlinear regression. Developed DMC
nd NLDMC algorithms are applied to the process and success
f the algorithms is tested.

. Dynamic matrix control

DMC is a control algorithm used to control complex problems
rising from operating a process. When an objective function for
he predictive control is defined, DMC becomes an algorithm
hich optimizes the objective function. The DMC is based on
arametric system model which allows the multi-input–multi-
utput algorithm to control the multivariable system with set
f linear equation [2]. The performance of DMC depends on
number of design parameters like length of the control time

nterval, the number of future moves for the manipulated vari-
ble and the number of time intervals in the output prediction
2].

Linear/nonlinear DMC algorithm is described as follows
11].

.1. Linear DMC

DMC mainly consists of four parts:

a. Model
If we consider the single input/single output case the model

becomes

y(k) =
NT∑
i=1

ai�u(k − i) + aNu(k − NT − 1) + d(k) (1)

b. Estimation of disturbance effect
The disturbance effects can be determined by subtracting

the effects of past inputs on output from the measurement of
the output

d(k) = ymeasurement(k) −
[

NT∑
i=1

ai�u(k − i)

−aNTu(k − NT − 1)

]
(2)

c. Prediction into the future
The future prediction is defined as follows:

ylin = ypast + A�u + d (3)

. Calculation of the control inputs

The control inputs are calculated as below:

in
P∑

γ2(i)[ysetpoint(k + i) − yLi(k + i)]
2

�u
i=1

+
M∑

j=1

λ2(j)[�u(k + M − j)]2 (4) w
o
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If we solve the Eq. (3) with least squares solution, we get the
ollowing equation:

u = (ATΓ TΓA + ΛTΛ)
−1

ATΓ TΓ (ysetpointypast − d) (5)

.2. Nonlinear DMC

Nonlinear DMC algorithm is used for predictive control pur-
oses.

For nonlinear model based control, NARMAX model is given
s

(t) = a1y(t − 1) + a2y(t − 2) − b0u(t − k)3 (6)

here y is the pH value and u presents the acid flow rate.
In nonlinear model based control algorithm, an extended lin-

ar and nonlinear disturbance based model is defined. There is
new disturbance vector d which contains contributions from

he nonlinearities of the system as dnl and external disturbances
s dex. So the estimates of the future outputs over the prediction
orizon can be written as

nl = ypast + A�u + dext + dnl (7)

The aim of using nonlinear dynamic matrix control algorithm
s to clarify the disturbance vector which is used in prediction.
f DMC control law is applied to a nonlinear plant, the vector d
ill contain contribution from nonlinearities defined as dnl

d(k + 1)
...

d(k + P)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

dext(k + 1)
...

dext(k + P)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

dnl(k + 1)
...

dnl(k + P)

⎤
⎥⎥⎦ (8)

If we combine the Eqs. (3) and (8) we get the following
quation:

el = ypast + A�u + dext + dnl (9)

here dnl varies from one sampling time to another and dext is
ssumed to be constant.

The optimal DMC inputs for the developed linear model are

u=(ATΓ TΓA + ΛTΛ)
−1

ATΓ TΓ (ysetpointypast − dext − dnl)

(10)

The output from nonlinear model (ynl) is given at all the future
ampling times in the following equation:

ynl(k + 1)
...

ynl(k + P)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yel(k + 1)
...

yel(k + P)

⎤
⎥⎥⎦ = ypast + A�u + dext

+

⎡
⎢⎢⎣

dnl(k + 1)
...

⎤
⎥⎥⎦ (11)
dnl(k + P)

here dext is assumed to be constant and dnl varies from one
perating point to another over the prediction horizon. The pur-
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ose here is to obtain the vector dnl. One method of solving
onlinear equations of dnl is the fixed-point algorithm [11] as

nl
l+1 = dnl

l + β(ynl
l+1 − yel

l+1) (12)

Here, l is the iteration number and β is a factor used to expand
he region of convergence. The control action �u(k) at the incre-

ent time is implemented on the plant and calculations are
epeated at the next increment time. Then iterations on non-
inear model based control calculations are repeated at the next
ncrement time.

. Application to a reactor

.1. Reaction mechanism

In our experimental system, calcium hydroxide (Ca(OH)2) is
ed to the system at a constant flow rate and it reacts with sulfuric
cid (H2SO4) which flow is the manipulated variable and product
s calcium sulfate (CaSO4). The sulfuric acid is allowed to react
ith calcium carbonate(CaCO3), which is given as a load effect.
he reactions are given below

a)Ca(OH)2 + H2SO4 → CaSO4 + 2H2O

b)CaCO3 + H2SO4 → CaSO4 + CO2 + H2O

. Experimental system

In the experiments a continuous stirred tank with a capacity
f 2 l is used (Fig. 1). Reactor jacket is heated by a water bath,
o the reactor medium is kept at 60 ◦C. Base solution which
s calcium hydroxide in the present study is fed to the reactor
t a constant flow rate. The manipulated variable in the system

s sulfuric acid (H2SO4) flow rate. The values of manipulated
ariable are determined with on line signal which come from
omputer and thus the amount of acid solution to be fed to the
eactor is adjusted [12].

Fig. 1. Experimental system. 1: thermo bath, 2: stirrer, 3: reactor, 4: base pum
g Journal 137 (2008) 320–327 323

.1. Experimental method

The aim of the work is to keep the pH value at 3.5. Solid
aCO3 is added instantly as random load changes when pH value

eaches 3.5 The measurement of pH is performed by a pH sensor.
ontrol variable in the experimental systems is pH. During the
xperiment Ca(OH)2 is fed to the system continuously. Desired
perating conditions of the system are given in Table 3.

. Determination of optimal operating condition

Optimal operating condition is related to the control of the
acketed batch reactor in which limestone neutralization occurs
y using sulfuric acid. Operating parameters for limestone slurry
itrated with sulfuric acid were investigated by statistical model
dentification. It was clearly observed that four independent vari-
bles had an effect on the conversion. These were temperature,
H, particle size and solid/liquid ratio. The dependent variable
as the conversion. To determine the maximum conversion,
ptimal values of the independent variables were evaluated by
tilizing the Box Wilson optimization method and the response
urface methodology (RSM) [13]. In these methods, the form
f the relationship between the response and the independent
ariables is unknown. Therefore a suitable functional relation-
hip between the dependent and independent variables is looked
or by approximation through sequential steps of applying
olynomials of increasing degrees until an optimum operating
onditions for the system is reached. The relationship between
he dependent and independent variables is given below by using
statistical model.

= b0 + b1X1 + b2X2 + b3X3 + b4X4 + b12X1X2

+b13X1X3 + b14X1X4 + b23X2X3 + b24X2X4
+b34X3X4 + b123X1X2X3 + b234X2X3X4

+b134X1X3X4 + b124X1X2X4 + b1234X1X2X3X4

(13)

p, 5: base tank, 6: acid pump, 7: acid tank, 8: computer, 9: pH meter.
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Table 1
Optimal design matrix

Exp. no. X1 X2 X3 X4 Y

1 +1 +1 +1 −1 5.76
2 +1 +1 +1 +1 9.44
3 +1 +1 −1 −1 2
4 +1 +1 −1 +1 5.44
5 +1 −1 +1 −1 9.04
6 +1 −1 +1 +1 16.64
7 +1 −1 −1 −1 6.4
8 +1 −1 −1 +1 8.48
9 −1 +1 +1 −1 29.6

10 −1 +1 +1 +1 56
11 −1 +1 −1 −1 23.52
12 −1 +1 −1 +1 46.4
13 −1 −1 +1 −1 51.2
14 −1 −1 +1 +1 64
1
1

w
g

X

U

�

e
W

b

t
c
o
t
t
d
m
i

S

S

T
T

b
b
b
b

Table 3
Optimal operating conditions

Parameters Optimum values

PH 3.5
T (◦C) 60
S
D

f

t

S

m
t
w

F

d

S

T
j

Y

m
v
c
i
i
(
c

5 −1 −1 −1 −1 15.44
6 −1 −1 −1 +1 50

here Xi presents codified values The related equations were
iven as

i = Ui − Uiav

�Ui

, i = 1, 2, . . . , n (14)

iav = Umax
i + Umin

i

2
, i = 1, 2, . . . , n (15)

Ui = Umax
i − Umin

i

2
, i = 1, 2, . . . , n (16)

The model coefficients were calculated by the following
quation using the MATLAB package program (The Math
orks Inc., Natick, MA, USA):

i =
∑in

j=1XijXi

N
(17)

According to the two-level factorial experimental design
echnique, 2n experiments are required to identify the statisti-
al model, where ‘2’ indicates the lowest and the highest values
f the selected operating variables and ‘n’ is the number of
he parameters. The conversion values obtained by applying
he design matrix given in Table 1 were used to were used to
etermine the values of the constants in the linear-regression
odel. The parameters of identified statistical model are given

n Table 2. The error mean square was found as (n0 = 3)

2
∑n0

i=1(Y0
i − Ȳ0

i )

e =

n0 − 1
(18)

In order to determine the significance of each coefficient,
tudent’s t-test was applied. The static model constants were

able 2
he parameters of identified statistical model

0 = 24.97 b4 = −7.08 b23 = −2.33 b234 = −1.26

1 = −17 b12 = 0.46 b24 = 0.1 b134 = −1.51

2 = −2.63 b13 = −2.94 b34 = 0.7 b124 = −0.29

3 = 5.19 b14 = 5.05 b123 = 1.88 b1234 = 1.85

m

d
t
t

6

u
s

/L 0.03
(mm) 0.375/0.250

ound as

i = |bi|
Sbi

, i = 0, 1, . . . 1234 (19)

bi = Se√
N

, i = 0, 1, . . . 1234 (20)

Fisher’s F test was applied to see the fitness of the new esti-
ated regression equation which was obtained by the removal of

he insignificant coefficients. According to this test the F value
as determined by using the following equation:

= S2
r

S2
e

(21)

In this equation S2
r is the residual mean square, and it was

etermined as given below

2
r =

∑N
i=1

(
Yi − ∧

Yi

)2

N − l
(22)

The optimal conditions were determined as given in Table 3.
he identified statistical model defining the conversion in a

acketed batch reactor is given below:

= 24.97 − 17X1 − 2.63X2 + 5.19X3 − 7.08X4

−2.94X1X3 + 5.05X1X4 − 2.33X2X3 + 1.88X1X2X3

−1.26X2X3X4 − 1.51X1X3X4 + 1.85X1X2X3X4 (23)

In the present work, 2n factorial design was used for three
ain reasons. It provides information on the effect of several

ariables almost as soon as a comparable amount of information
an be generated on the effect of one variable alone. In addition,
t can later be developed into a composite design in order to
dentify the second-order polynomial by adding only star point
which is the distance of the axial points from the center and
enter points to the 2n factorial experiments). It also provides a
easure of interactions between independent variables.
For the reasons mentioned above, incomplete factorial

esigns such as fractional factorial design and the multi fac-
orial design could be used in order to determine the effect of
he independent variables on the dependent variable.

. Results
The output change was obtained for DMC algorithm with
nit step response before the control experiment was realized as
een in Fig. 2.
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Fig. 3. The change in pH and acid flow rate with time by DMC control algorithm
(set point 3.5 and acid concentration 0.05 M).
ig. 2. The change in pH with deviation variable by giving the unit step response.
C (control horizon): 1, NP (prediction horizon): 3, � (weight factor): 0, NT:
6.

For the prediction horizon the low values (NP = 3) were cho-
en as the inherent process nonlinearities which did not serve for
dequate long term projections of the controller outputs. Accord-
ngly, for the control horizon value (NC = 1) was selected. These
ow values of NP and NC were kept relatively small with the
omposite pseudo-inverse matrix, which is a key factor for the
uick calculation of the controller action. NT is chosen as 36,
hich is 60% of the step response.
Kmat was calculated from Eq. (24) as below

=

⎡
⎢⎣

0

−0.079

−0.115

⎤
⎥⎦

mat = [ATA + λI]
−1

AT = [0, −4.03, −5.87] (24)

Kmat values in Eq. (24) and DMC algorithm were written in
isual Basic. pH control of the process was realized with DMC
ontrol algorithm. For this purpose process was brought to a
teady state under optimum operating conditions and afterwards
cid solution was given to the reactor at a constant flow rate by the
ump which was adjusted by a computer program. At the same
ime Ca(OH)2 solution was also given to the reactor at a constant
ow rate. When the system was in steady state condition, solid
aCO3 was introduced into the system to apply load effect. As
result pH value increased. In this state a computer program
hich was loaded with DMC algorithm sent a signal to the pump

nd this adjusted the pump’s flow rate. The performance of this
ethod was determined with ISE and IAE values

SE =
t∑

t=0

[y(t) − r(t)]2 (25)

AE =
t∑

t=0

|y(t) − r(t)| (26)

Calculated ISE and IAE values are given in Figs. 3 and 4.
cid flow rate in Figs. 3 and 4 are calculated from the values
f the pump. The calibration is achieved by using the equation
iven below
= 15.196x − 48.011 where x ≥ 3 and u = 0 where x < 3

is the acid flow rate as ml/min and x presents the values of
he pump. The load disturbance is a step change, which is 30 g

Fig. 4. The change in pH and acid flow rate with time by DMC control algorithm
(set point 3.5 and acid concentration 0.004 M).
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Fig. 5. Changes in pH and pump flow

Table 4
Model parameter values

Model parameters Parameter values

a 0.9498
a
b

o
s
l
m
t

M
s
a
w
c

F
(

M
b
[
v

t
F
c
o

d
s
m
a
manipulated variable evaluated by using iteration is not unstable,
1

2 −0.0186

0 0.001

f CaCO3. This solid CaCO3 dissolution is a slow process. The
ystem behavior is nonlinear, that is why pH profile shows oscil-
atory behavior in Figs. 3 and 4.The pH value of the reaction

ixture which is controlled by using DMC algorithm follows
he pH set point 3.5 with the maximum absolute error of 0.4.

For better performance of DMC control algorithm first NAR-
AX type of the process was determined. While P.R.B.S.
ignal was given to the acid flow rate, 30 g of CaCO3 was
dded as a step type load effect, and then the change of pH
ith time was observed on-line. Model parameters were cal-

ulated from the changes of pH with time as seen in Fig. 5.

ig. 6. Changes in pH and acid flow rate with time by NLDMC control algorithm
set point 3.5 and acid concentration 0.05 M).

b
c

F
(

rate under the PRBS load effect.

odel parameters were calculated with Gauss Newton method
y using Matlab program. The model was determined as
y(t) = a1y(t − 1) + a2y(t − 2) − b0u(k)3]. These three parameter
alues are given in Table 4.

NARMAX model was combined with linear DMC con-
rol algorithm and experiments were repeated. As seen in
igs. 6 and 7, ISE and IAE values obtained during NDMC
ontrol of pH were smaller than those obtained during linear
nes.

Addition of 30 g of solid CaCO3 is a step load effect. CaCO3
issolution continues during the control. Dissolution of CaCO3
hows a random disturbance which is very effective on the
anipulated variable during the control. Constant base flow rate

lso has an effect on the manipulated variable. In Eq. (10) the
ut process is very nonlinear. Nonlinear model based control cal-
ulations take considerable CPU time which causes time delay

ig. 7. Change in pH and acid flow rate with time by NLDMC control algorithm
set point 3.5 and acid concentration 0.004 M).
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Table 5
ISE and IAE values for linear DMC

Figure no. Set point for pH ISE IAE

4.2 3.5 167.82 219.49
4.3 3.5 24.44 82.65

Table 6
ISE and IAE values for nonlinear DMC

Figure no. Set point for pH ISE IAE

4
4

i
r
r

7

c
w

t
t
l
6
d
w
r
i

D
U
g
n
s

n
s

A

v

R

[

[

[

.5 3.5 22.28 81.62

.6 3.5 23.31 78.05

n evaluating the value of the manipulated variable and this
esults in the oscillatory behavior of pH values and acid flow
ates.

. Conclusion

In this work, control of CaCO3–H2SO4 neutralization pro-
ess with linear and nonlinear dynamic matrix control method
as examined.
At the start of the control work, the reactor reaction mix-

ure was brought to a steady state at constant pH value. During
he experiments all the other parameters except for the manipu-
ated variable (pH), were kept at constant values. (Temperature:
0 ◦C and base solution flow rate 2 ml/s.) In steady state con-
ition, control program was run and the system performance
as observed. From here a graph of pH–time and acid flow

ate–time was drawn. Calculated ISE and IAE values are given
n Tables 5 and 6.

It is concluded from the ISE and IAE values that nonlinear
MC gives better results than those obtained by linear DMC.

sing a polynomial type empirical model with this algorithm
ave a good result. In approximation of linear model for the
onlinear process, iteration was a disadvantage. In our work,
ampling time was very important in linear DMC control. When

[
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onlinear equation was determined correctly, nonlinear DMC
howed all the characteristics of DMC.
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